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Abstract 

We investigate the family of facet defining inequalities for the asymmetric traveling salesman (ATS) 
polytope obtainable by lifting the cycle inequalities. We establish several properties of this family 
that earmark it as the most important among the asymmetric inequalities for the ATS polytope 
known to date: (i) The family is shown to contain members of unbounded Chvatal rank, whereas 
most known asymmetric inequalities are of Chvatal rank 1. (ii) For large classes within the family a 
coefficient pattern is identified that makes it easy to develop efficient separation routines, (iii) Each 
member of the family is shown to have a counterpart for the symmetric TS (STS) polytope that is 
often new, and is obtainable by mapping the inequality for the ATS polytope into a certain face of 
the STS polytope and then lifting the resulting inequality into one for the STS polytope itself. 



1    Introduction 

The symmetric traveling salesman (STS) polytope has been intensively studied for the last 20 years, 

with the result that a large variety of facet families are known (see [13] for a recent survey of the 

STS problem). The asymmetric traveling salesman (ATS) polytope has been studied mainly in the 

last few years. Each facet defining inequality for the STS polytope gives rise to a symmetric valid 

inequality for the ATS polytope, which in most cases is facet defining (see [5, 7, 13]). In addition, 

several families of asymmetric facet defining inequalities for the ATS polytope have been identified 

[1, 2, 3, 8], which have no obvious counterpart for the STS polytope. One of these families is that of 

lifted cycle inequalities, introduced and shown to be facet defining for the monotone ATS polytope 

by Grötschel and Padberg [9, 10], and for the ATS polytope itself (for cycles C with \C\ < n — 3) 

by Balas and Fischetti [5]. 

In this paper we investigate the family of lifted cycle inequalities for the ATS polytope, and 

establish several properties that clearly earmark it as the most important among the families of 

asymmetric facet inducing inequalities known to date: 

(i) The family is shown to contain members of unbounded Chvätal rank. Most known families 

of asymmetric inequalities have Chvätal rank 1. 

(ii) For large classes within the family, a coefficient pattern is identified that makes it easy to 

develop efficient separation routines. 

(iii) Each member of the family is shown to have as a counterpart a facet defining inequality for 

the STS polytope, sometimes of a known type, sometimes new, obtainable by mapping the 

inequality for the ATS polytope into a certain face of the STS polytope and then lifting the 

resulting inequality into one for the STS polytope itself. 

From a broader perspective, the importance of asymmetric facet defining inequalities is twofold: 

On the one hand, they make it advantageous to solve ATS problems directly as ATS problems 
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rather than reducing them to an STS problem; on the other, as we show in this paper, they have 

polyhedral implications for the STS problem. It is well known (see Karp [14], and more recently 

Jünger, Reinelt and Rinaldi [13]) that every ATS problem on the complete digraph G = {N, A) can 

be restated as a STS problem defined on a special undirected graph with 2\N\ vertices and \A\ + \N\ 

edges, where \N\ specified edges must be contained in every tour. When solving the ATS problem 

as an STS problem, one can of course use the whole arsenal of separation routines developed for 

that problem. However, all the facet defining inequalities for the STS problem, along with the 

corresponding separation routines, have their direct counterparts for the ATS problem; and if the 

ATS problem is solved directly as such, then in addition one can also use the asymmetric facet 

defining inequalities and their separation routines, which are often simpler than their counterparts 

for the STS polytope. On the other hand, as pointed out in (iii) above and in more detail in 

section 8, the asymmetric facets of the ATS polytope can be used to derive new facets for the 

STS polytope. The polyhedral implications of the transformation of an ATS problem into an STS 

problem are, to our knowledge, examined here for the first time. 

Let G = {N, A) be the complete directed graph with |iV| = n nodes, and let P be the ATS poly- 

tope, i.e. the convex hull of all incidence vectors of tours (Hamiltonian dicycles) in G. Throughout 

this paper, x(H) := £{^ : (M) € H] for all H C A and x(S,T) := £{*y :ieS,jeT} for all 

S,T C N. As usual, we denote 

6+(S)   :=   {(ij)eA-.ieS, jeN\S} 

S-(S)   :=   {(i,j)eA:jeS, ieN\S} 

7(5) ':=    {{i,j)£A:i,jeS}. 

Then the ATS polytope can be defined as the convex hull of all 0-1 points in MA satisfying the 

degree equations 
x{6+{i))   =   1,        i€N 

x(5-(i))   =   1,        *eiv 



and the subtour elimination inequalities 

x(7(5)) < |5| - 1,       ScN, 2<\S\<n-l. 

The set of all nonnegative points (possibly fractional) satisfying the degree equations and the 

subtour elimination constraints is called the subtour elimination polytope. 

We will denote by P the monotone ATS polytope, defined as the convex hull of all 0-1 points 

satisfying the degree inequalities 

x+{6{i))    <    1,        i€N 

x(6-(i))    <    1,        i€N 

and the subtour elimination inequalities. P is closely related to the submissive of P, defined as the 

convex hull of all subsets of tours; the two notions coincide for complete graphs and many other 

cases (see [5] for a discussion of their relationship). 

Unless otherwise stated, all directed cycles considered in this paper are simple. Let S C N, 

S = {ii,i2,---,is}, and let C := {(ii,^), fah), ■ ■ ■, (is-iJs), (is,h)} be a directed cycle visiting 

all the nodes in S. For the sake of simplicity, we will use ij+\ and Zj_i to denote the successor and 

the predecessor, respectively, of node ij in the cycle (hence is+\ = i\ and io = is)- A chord of C 

is an arc (ih,ik) € A such that i* ^ ih+\- Let R denote the set of chords of C. For every subset 

FC A, let P(F) := {x G P : xa = 0 Va G F}. It is well known that 

x{C) < \C\ - 1 

defines a (nontrivial) facet of the polytope P(R).  Moreover, let R = {ai, 02, ..., am}; then the 

lifted cycle inequality 
m 

ax := x(C) + ^ ccaixai < ao := \C\ - 1 
t=i 

defines a facet of P (see Grötschel and Padberg [9, 10]), where the lifting coefficients aai (i = 

1,... ,m) are sequentially computed as the maximum value such that inequality ax < c*o is valid 

for P({oi+i,..., am}). It is well known that (a) different sequences {af, i = l,...,m} may lead to 

different inequalities ax < a0, and (b) the value of a given coefficient is largest if lifted first, and is 



a monotone nonincreasing function of its position in the lifting sequence (with the position of the 

other coefficients kept fixed). In the case of lifted cycle inequalities ax < a0, it is easily seen that 

aai € {0,1,2} for i = l,...,m. 

We will study the lifted cycle inequalities on P rather than P, since P is full dimensional, and 

the following result obtains: 

Theorem 1.1 (Balas and Fischetti [5]) Any lifted cycle inequality for P whose defining cycle has 

at most n — 3 arcs, induces a facet of P. 

Our paper is organized as follows: Section 2 characterizes those chord sets whose members may 

all have a coefficient equal to 2 in some lifted cycle inequality. Also, this section identifies those 

chords whose coefficients are forced to 0 by assigning value 2 to some other chord. Section 3 intro- 

duces the class of maximally 2-lifted cycle inequalities, which lend themselves to an easy derivation. 

The next two sections deal with maximally 2-lifted inequalities of rank 1 and of unbounded rank, re- 

spectively. Section 6 addresses the separation problem for the class of inequalities under discussion. 

Finally, Section 7 deals with the intriguing potential for deriving new facet defining inequalities for 

the symmetric TSP from the above classes of inequalities for the ATSP. 

2    Two-Liftable Chord Sets 

In this section we characterize those sets of chords that can get a coefficient 2 in the lifting process. 

We first note that a given lifted cycle inequality ax < a0 obtained, say, via the chord sequence 

ai,... ,am, can always be obtained via an equivalent chord sequence in which all the chords with 

coefficient 2 appear (in any order) at the beginning of the sequence, while all the chords with 

coefficient 0 appear (in any order) at the end of the sequence. We call any such chord sequence 

canonical. Indeed, consider swapping the positions in the lifting sequence of two consecutive chords. 

Clearly, either (a) their coefficients remain unchanged, or (b) the coefficient of the chord moved to 

the left increases and the other one decreases. Case (b) cannot occur when a chord with coefficient 



2 is moved to the left or a chord with coefficient 0 is moved to the right. Therefore a sequence of 

swaps of the above type leads to the desired canonical form. 

A given set H C R is called 2-liftable if there exists a chord sequence producing a lifted cycle 

inequality ax < ao such that aa = 2 for all a € H. Because of the above property, such a 

sequence can w.l.o.g. be assumed to be canonical. It then follows that H is 2-liftable if and only if 

ax := x(C) + 2x(H) < \C\ — 1 is a valid inequality for P(R \ H). We will show that in order to 

impose this condition it is necessary and sufficient to forbid the presence in H of certain patterns 

of chords. 

Two distinct arcs (i,j) and (u, v) are called compatible when there exists a point in P containing 

both, i.e. when i ^ u, j ^ v, and (i,j) and (u, v) do not form a 2-cycle. Two arcs that are not 

compatible are called incompatible. Given a chord (ia,ib) of C> we can internal w.r.t. (ia,ib) the 

nodes ib,i&+i,. . . ,ia\ external the nodes ia+i, • ■ •,i&-i- Given two compatible chords (ia,ib) and 

(ic,id)> we say that (ic,id) crosses (ia,ib) if nodes ic and id are not both internal or both external 

w.r.t. (ia,ib)', see Figure 1 for an illustration. Note that (ic,id) crosses (ia,ib) if and only if (ia,ib) 

crosses (ic,id), i-e-, the property is symmetric. 

We define a noose in CUR as a simple alternating (in direction) cycle Q := {aj, 6i, 02,62,..., aq, bq} 

of 2q > 4 distinct arcs a, € R and 6, 6 C (i = 1,..., q), in which all adjacent arcs in the sequence 

(including bq and ai) are incompatible and all chords are pairwise noncrossing (see Figure 2). 

Theorem 2.1 A chord set H C R is 2-liftable if and only if C U H contains no pair of crossing 

chords and no noose. 

Proof. We show that for any cycle C and any chord set H, the inequality 

ax := x{C) + 2x(H) < \C\ - 1 

is valid for P(R \ H) if and only if the condition of the. theorem is satisfied. In particular, we show 

that if H contains a pair of crossing chords or a noose, one can always exhibit a point in P(R \ H) 



NONCROSSING CROSSING 

NONCROSSING 
c -b 

CROSSING 

Figure 1: Crossing and noncrossing chords. The internal nodes w.r.t. (ia,ib) are marked with +, 
and the chords are drawn in double lines. 

that violates ax < \C\ - 1. Conversely, we prove by induction on \H| that the absence of crossing 

pairs of chords and nooses implies the validity of ax < \C\ - 1 for P(R \ H). 

(a) Necessity. Suppose H contains a pair of crossing chords, say {ia,ib) and (ic,id)- Then 

(possibly after interchanging the roles of the two chords) the situation is that depicted in Figure 3(a), 

where case ia = id (but not ic = i&) is allowed. The arc set 

F := C U {(ia, ib), (ic, id)} \ {(ia, *o+l), (»c, »c+l), (»6-1, *&). (»d-l. »d)> 

contains at least \C\ -4 members of C (note that (ic,ic+i) and (ib-x,ib) may be the same), plus the 

two chords (ia,ib) and (ic,td). Then clearly the characteristic vector x* of F belongs to P(R \ H) 

and violates the inequality ax < \C\ - 1. 

Suppose now that C U H contains a noose Q = {01,61,02, b2,..., aq, bq}, and let ß € C be the 



Figure 2: A noose Q with q = 4. 

Figure 3: Illustration of the constructions used in the proof of Theorem 2.1 (in bold and double 
line the arcs in F) 



arc preceding b{ in C (i = 1,..., <?); see Figure 3(b). Define 

F := C U {ai, a2, • • •, og} \ {&i, ft. &2> A. ■ ■ •, &9. #?}• 

It can easily be seen that the characteristic vector x* of F belongs to P(R \ H), and satisfies 

ax* = \C\ + 2q-2q= \C\, hence ax < \C\ - 1 is not valid for P(R \ H). 

(b) Sufficiency. We prove the claim by induction on \H\. When \H\ = 0 the claim trivially 

holds. Now assume that it holds for a cycle C and all chord sets H' with \H'\ < /x, and consider 

any given cycle C and any chord subset H, where \H\ = \i + 1, satisfying the condition of the 

theorem. We have to show that, given any vertex x* of P(R \ H), ax* < \C\ - 1 holds. 

Let F := {a e C U H : x* = 1}, and note that ai* = \Ff)C\ + 2\F D F|. If there exists o'Eif 

such that z*. = 0, then clearly ax* = x*(C) + 2x*(H\{a*}) and the claim follows directly from the 

induction hypothesis. Hence assume x*a = 1 for all a € H. This implies that the chords in H are 

pairwise compatible. Now let {ia,ib) be any chord in H, and define the set I := {ib,ib+i, ...,ta} 

and E := {ia+i, W2, • • • ,i&-i} of the associated internal and external nodes, respectively. Since 

(ia,ib) E F, we must have (ib-i,ib) & F and (t0,*a+i) 2 -F- In addition, no chord in H crosses 

(ia, ib) by assumption, hence F can be partitioned into F7 UFE, where f> C / x I and FB C E x £. 

Now let a*j and rr} (resp., a£ and x*E) denote the restriction of a and x* to Ixl (resp., ExE). Then 

QX* = Q/xJ + aEx*E. We will show that aix*- < \I\ and aEx*E < \E\ - 1, from which ax* < |C| - 1 

and hence the claim follows. 

Consider first the term a7x| = \FInC\ + 2\FInH\. Define a new cycle C/ := {(ia,^), (*6,*fc+i), 

•. •, (»a-i, ia)}, and a chord set if/ := if n (I x J) \ {(ia, i6)}. It can easily be seen that d U If/ 

contains no crossing chords and no nooses (note that a noose in C/Uff; would be a noose in CUH 

as well). Hence the induction hypothesis implies that x*(d) + 2x*(Hj) < \Cj\ - 1 = |I| - 1, where 

the left-hand side equals a/xj - 1 (since (ifl,t6) is a chord of C but not of C/). 

A similar reasoning applies to aEx*E = \FE n C| + 2|F£ n ü|. Indeed, define a new cycle 

C£ := {(it-i.io+i), (Wi,^2), ■ ■ ■, (i6-2,<6-i)} and a chord set HE := H H (E x E). Note that 
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(ib-i,ia+i) & H, since otherwise it, together with (ia,ib) induces a noose. Clearly HE contains 

no crossing chords, since H does not. As to nooses, it suffices to observe that any noose QE in 

CE U HE would correspond to a noose Q in C U H, where Q := QE if (i&_i,ia+i) £ Q.E, and 

Q ■= {QE \ {(ib-i,ia+i)}) U {(*6_i,ifc), (w&), (*oi*o+i)} otherwise. Then the induction hypothesis 

leads to aEx*E = x*(CE) + 2x*(HE) < \CE\ - 1. This completes the proof.D 

An immediate consequence of Theorem 2.1 is that the set of 2-liftable chords is never empty for 

\C\ > 3. It then follows that the subtour elimination inequalities, in which every chord has a coef- 

ficient 1, are not sequentially lifted inequalities (they can be obtained from the corresponding cycle 

inequality by simultaneous lifting). Any chord that is lifted first in a sequential lifting procedure 

must get a coefficient 2. 

We might note at this point that we have touched upon an important point of difference be- 

tween the symmetric and asymmetric TS polytopes. In the case of the STS polytope, the subtour 

elimination inequalities are the only kinds of lifted cycle inequalities: whichever chord is lifted first, 

it gets a coefficient of 1, and so does the chord that is lifted last. 

Assigning a chord (i,j) the coefficient a,j = 2 forces to 0 the coefficients of several other chords. 

Theorem 2.2 Let (ia,ib) be a chord of C such that aiaib = 2. Then the following chords must 

have coefficient 0 (see Figure 4)'- 

(i) (ij,ia+i) forallj = b,b+l,...,a- 1; 

(ii) (ib_i,ie) for all £ = b+l,b + 2,... ,a. 

Proof. For any chord satisfying (i) or (ii) that is assigned a coefficient greater than 0 we exhibit 

a feasible point x that violates ax < \C\ — 1. 

In case (i), such a point is given by the arc set C \ {(ia,*o+i). ih-i,ib), {ij,ij+i)}) U {(Wb), 

(ij,ia+i)}; in case (ii), the corresponding arc set is C-\ {(ia,Ui). (*6-i,*&)> (^-i>v) u {(Wb)> 

(h-i, ie)}-n 
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la+\ 

(0 CO 

Figure 4: The dashed lines represent chords with coefficient 0. 

Corollary 2.3 If the chord (Wa+2) has coefficient 2, then all chords incident with node ia+i must 

have coefficient 0. 

Proof. It is enough to observe that chords (ia+i,ia) and (ia+2,ia+l), which are not covered 

by Theorem 2.2, cannot be assigned a coefficient greater than 0 due to the feasibility of the 

points associated with arcsets C \ {(Wa+l), (»a+bia+2), (ia-l,ia)} U {(ia, ia+2), (ia+i,*a)} and 

C \ {(ia, ifl+i), (ia+l, ia+2), (ia+2, »o+s). } U {(ta, ia+2), (ia+2, ia+l)}D 

3    Maximally 2-Lifted Cycle Inequalities 

Given a lifted cycle inequality with a given set of 2-lifted chords and a corresponding set of chords 

with coefficients forced to 0, the size of the remaining coefficients depends in general on the lifting 

sequence. Next we characterize a class of lifted cycle inequalities whose 0-1 coefficients are largely 

sequence-independent. 

A set Q2 of 2-liftable chords is termed maximal if no set of the form Q2U{{i, j)}, {i,j) € R\Q2, 

is 2-liftable. A lifted cycle inequality whose set of chords with coefficient 2 is maximal 2-liftable, 
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will be called a maximally 2-lifted cycle inequality. 

Proposition 3.1  The maximum cardinality of a 2-liftable chord set is \C\ - 2. 

Proof. We show by induction on \C\ that any set of pairwise noncrossing chords has at most 

\C\ - 2 elements. On the other hand, examples of lifted cycle inequalities with \C\ - 2 2-liftable 

chords will be exhibited in the following sections. 

The statement is clearly true for \C\ = 3. Suppose it is true for \C\ = 3,4,... ,k - 1, and 

let C be any cycle with \C\ = k > 4. For any chord (i, j), we denote by Cy the shorter of the 

two cycles contained in C U {(i,j)}- Consider any set H of pairwise noncrossing chords of C, 

and let (ia,ib) be a member of H for which \Ciaib\ is the largest. W.l.o.g., let a, a + 1,..., b be 

denoted 1,2,..., q. Then C has q - 2 external nodes relative to (ia, h) = (*i, h)- Further, by the 

definition of {h,iq), every chord in H incident with an external node is of the form (ij,ie) with 

j > £. Since H contains no crossing chords, no chord incident with an external node is incident 

with either i\ or iq. Therefore, the number of such chords is at most q - 3. On the other hand, 

all remaining chords except for (i\,iq) are also noncrossing chords of d^, and by the induction 

hypothesis their number is at most \Ciliq\ - 2 = \C\ - (q - 2) - 2 = \C\ - q. It then follows that 

\H\ < (q - 3) + (\C\ - q) + 1 = \C\ - 2, as claimed. This completes the induction.D 

Notice that not all sequentially lifted cycle inequalities are maximally 2-lifted. Examples of 

(facet inducing) lifted cycle inequalities with a single 2-lifted chord are shown in Figure 5. (For 

the first graph of that figure, the appropriate lifting sequence is (3,2), (1,4), (3,1), (4,2) etc.). In 

fact, the h-canonical form (see [4] for a definition) of any CAT inequality (where h is a source) is 

a lifted cycle inequality with a single 2-lifted chord. 

On the other hand, we can identify some large classes of maximally 2-liftable cycle inequalities 

with nice properties that are useful in the context of separation. The next theorem gives a sufficient 

condition for a given inequality related to a cycle C to be a (facet defining) lifted cycle inequality 

for P. 
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Figure 5: Support graphs of two lifted cycle inequalities having a single chord with coefficient 2. 

Theorem 3.2 Let ax < a0 be an inequality with öy = 1 for all arcs (i,j) of a given cycle C of 

length \C\ = a0 + 1 < n - 1, where atj € {0,1,2} for all chords (i,j) of C, and Qy = 0 for all other 

arcs. Let Qt := {(i,j) € R : ay = *} for t = 0,1, 2, ond assume the following conditions hold: 

(a) Q2 is a maximal 2-liftable set; 

(b) all 0 coefficients are maximal, i.e. ctij = 0 implies the existence of x* G P such that ax* = a0 

and x*j = 1; 

(c) the inequality ax < c*o is valid for P. 

Then ax < a0 is a maximally 2-lifted cycle inequality, hence facet defining for P. 

Proof. If (a), (b) and (c) hold, then lifting Q2 first and then the remaining chords in any order in 

which the chords in Qi precede those in QQ yields ax < a0O 

A particularly friendly (and, it turns out, rich) class of lifted cycle inequalities is that for which 

Q0 ._ |(j j) e R ■ Qij = 0} is just the set of chords whose coefficients are forced to 0 by the 
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conditions of Theorem 2.2 and Corollary 2.3. For this class condition (b) holds automatically, and 

the only condition to be checked is (c): 

Corollary 3.3 Let ax < QO and let Qt := {(i,j) € R : ay = t} for t = 0,1,2. // Qi is a maximal 

2-liftable set and QQ is the set whose coefficients are forced to 0 by the conditions of Theorem 2.2 

and Corollary 2.3, then ax < ao is a (facet defining) lifted cycle inequality for P if and only if it 

is valid for P. 

One familiar subclass of this class is that of the D% and D^ inequalities introduced by Grötschel 

and Padberg [9, 10]. Another subclass will be introduced in Section 6. 

4    Maximally 2-Lifted Cycle Inequalities of Rank 1. 

In this section we introduce two new classes of lifted cycle inequalities of Chvätal-rank 1. We 

start by pointing out that the pattern of 2-liftable chords in a rank 1 inequality has to satisfy 

an additional condition (besides those required for 2-liftability): it has to define a nested family 

of node sets in the following sense. A family T of sets is nested if for every S\,S2 € T, either 

S\ C 52, or £2 C Si, or Si D S2 = 0. Given a cycle C and a chord (ia,ib) of C, we will denote 

again Ciaib := {(ia,%), {ib,ib+i), ■ • •, (ia-i,ia)}, i-e. Ciaib is the shorter of the two cycles contained 

in C U {(ia, ib)}. For any arc set F, we denote by N(F) the set of nodes spanned by F. 

Theorem 4.1 Let ax < ao be a lifted cycle inequality with cycle C, chord set R and Q2 := {(i,j) € 

R : aij = 2}. If ax < a0 is of rank 1, then the node sets N(C) and N{Ciaib) for all {ia,ib) £ Q2 

form a nested family. 

Before we prove this theorem, we notice its implication that rank 1 lifted cycle inequalities form 

a very special subclass indeed: for every (w&) € Q2, the path from ib to ia in C never meets the 

tail of any chord in Q2 before meeting its head. This implies, among other things, that Q2 cannot 

contain a 2-cycle. 
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For the proof of the theorem we need the following result, also useful for later proofs. 

Lemma 4.2 In any Chvdtal derivation of a lifted cycle inequality ax < a0, the following inequali- 

ties must appear with a positive multiplier: 

(a) x(7(N(C)) < \C\ - 1; 

(b) x{j{N{Ciaib)) < \Ciaib\ - 1,        for all (ia,ih) € Q2; 

(c) x(6+(ia)) < 1,        for all (ia,ib) € Q2; 

(d) x(6-(ib)) < 1,        for all {ia, ib) € Q2. 

Proof. Suppose there exists a Chvätal derivation of ax < a0 in which inequality (a) above does 

not have a positive coefficient. Then ax < a0 must be valid for the polytope P*, defined as the 

convex hull of points x € {0,1}A satisfying the degree inequalities and all the subtour elimination 

inequalities except (a). But the point x* defined by x\ = 1 for e E C, x*e = 0 otherwise, belongs 

to P* but violates ax < a0; a contradiction. The same argument applies to any of the remaining 

inequalities listed above, with the following definitions of x*: for (b), x*e = 1 if e € C U {(w&)} \ 

{(ia,ia+i),(ib-i,ib)}, x*e = 0 otherwise; for (c), x*e = 1 if e G C U {{ia,ib)} \ {(*a-l,»o), (»6-1,*fc)}, 

x^ = 0 otherwise; for (d), x* = 1 if e € CU {(w&)} \ {(»a, Wl), (*6,*W-i)}, ^ = ° otherwise.□ 

Proof of Theorem 4.1. We will show that there always exists a Chvatal derivation of the rank 1 

inequality ax < Q0, which uses only subtour elimination inequalities whose associated node sets 

form a nested family T. In view of the above Lemma, each of the subtour elimination inequalities 

(a) and (b) must belong to T, from which the claimed result follows. 

Let A\x < &i and A2x < b2 represent the degree inequalities and subtour elimination inequali- 

ties, respectively. Since ax < a0 is of rank 1 and is facet defining for the full dimensional polytope 

P, with relatively prime integer coefficients, there exist vectors m,u2 > 0 such that 

uiA\    +   u2A2    >   a 

uih    +    u2b2   <   Qo +1 
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Figure 6: Counterexample for the converse of Theorem 4.1 

(see Queyranne and Wang [15]). 

Given the vector ui, an associated U2 satisfying the above inequalities can be obtained by solving 

the linear program 

min{u2&2 : U2A2 > a — u\A\, U2 > 0}, 

whose dual is 

max{(a — u\A\)x : A2X < 62, x > 0}. 

It is known from arborescence theory that the above minimization problem always has an 

optimal solution Ü2 whose support is associated with a noncrossing set of subtour elimination 

constraints. (For a proof of this result, based on an "uncrossing" argument, see for instance [17], 

page 313).□ 

Theorem 4.1 gives a necessary condition for ax < ao to be of rank 1. Interestingly, this condition 

is not sufficient, as shown by the following example. Consider the cycle C and the 2-liftable set of 

chords of Figure 6. One can easily see that node sets N{C) and N(Ciaib) for {ia,ib) € Q2 form a 

nested family, as required in Theorem 4.1. However, no lifted cycle inequality ax < a0 with the 
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k = 7 k = 8 

Figure 7: Support graphs of two shell inequalities. 

2-chord pattern of Figure 6 can be of rank 1, as certified by the point x* with x£ := § for all 

(i,j) E C \ {(i5,i6)h <j " \ for a11 (*»J) € Q* \ i^)}, <i := 0 for all other arcs. Indeed, x* 

satisfies all degree and subtour elimination inequalities, but ax* = f > a0 + 1 = 9- This implies 

[16] that ax < a0 cannot be of rank 1. 

We now introduce two new large classes of maximally 2-lifted cycle inequalities of rank 1. 

Theorem 4.3 Let C be the cycle visiting in sequence the nodes ii,...,ik for some 

Then the shell inequality 

ax:=x{C)+   53 x({tj+i, ••■.**:.*I}I*J) 
3<j<k 
j  odd 

Jfc 

4 < k < n- 1. 

j=3 3<j<k-l 
j   odd 

IS 
a rank 1 maximally 2-lifted cycle inequality, hence facet defining for P.  (See Figure 7.) 

Proof. We show that the conditions of Theorem 3.2 are satisfied. 

(a) Q2 is easily seen to be a 2-liftable set (it contains no crossing arcs or nooses), and to consist 

of |C| - 2 chords, which from Proposition 3.1 implies that it is maximal. 
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(b) We claim that each 0 coefficient of a chord is maximal. Let (it,ij) be any chord with 

aitij = 0. If this chord is incident with 12-, then its coefficient is forced to 0 by the fact that 

(*i)*3) £ Q2 (see Corollary 2.3). Otherwise there are two main cases. 

Case 1: t is even (t > 4). If j € {1} U {t + 2,..., A;}, then again aitij = 0 because (ii,it+i) € Q2 

(Theorem 2.1, (ii)). Otherwise we have 4 < j < t — 2, j even, and we prove the claim by 

exhibiting a point x* € P such that x*ti. = 1 and ax* = a0: namely, x* is defined by x*„ = 1 for 

(u,v) € C\{(ii,i2), (ij_2,ij-l), (b',b+i)> (*t,*t+i)}U{(ii,ij+i), (ij,ij_i), (it,^)}, x^ = 0 otherwise 

(notice that a^i +1 = a^^ = 2, while auv = 1 for the remaining arcs of the above set, except for 

(it,ij))- 

Case 2: t is odd (t > 3). We exhibit a point x* € P such that rr*(ij = 1 and ax* = c*o, which 

proves the claim. Let A* denote the support of x*. The arcs in A* \ {(it,ij)} have coefficient 1, 

except for the starred ones, which have coefficient 2. 

If j € {t + 2,... ,k}, we set A* = {(ij+i,ij+2), ■ ■., (tfc.n), (*i,«2), • • •, (it-2,h-i)} U {(it,ij)}V 

{(it+i,*t)*, (*t+3,»t+2)*, ■••, (ij,tj-i)*}if j is even; and we set A* = {(it,ij), (ij,ij+i), ■ ■ ■, (tjfc.ii), 

(*i,*2), ••■, (U-2,U-i)} U {(*t+i,*t)*, (H+3,«t+2)*, •••, (*i-i.*i-2)*} if J is odd. 

If j € {3,... ,i - 1}, j must be even (since t is odd, and aitij = 1 for all odd j). Then we 

set A* = {(it+2,it+3), •••, (ik,h), {h,h), •••, (ij-2,ij-i)} U {(it+i,*t)*, (z*,«j)> (Wj-i)*} u 

{(ij+2,ij+i)*, (ij+4,ij+3)*, •••- (*t-ii*t-2)*}- 

Finally, if j = 1, we must have t ^ k, and we set A* = {(it,h), (ii,^). •••, {H-2,H-I)} U 

{(it+i,it)*, (it+3,*t+2)*, •••, (ifc,»fc-i)*} if* is even; and A* = {{iuh)} U {(ii,tfc)*, (i/c-1,^-2)*, 

• • •, in,h)*} if * is °dd. 

(c) We prove the validity of ax < c*o by giving its Chvätal derivation. All the nonzero multipliers 

of this derivation can be expressed in terms of the constant 

( 2fc/2 - 1   if fc   (= \C\) is even 
\x := I 

[ 2(fe_1)/2    otherwise. 

Here is the list of inequalities to be combined, along with their multipliers: 
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• the subtour elimination constraint (SEC) associated with N(C), with multiplier i; 

• the SEC associated with N(Chii), for j odd, 3 < j < k, with multiplier      ß     ; 

• the SEC associated with N(Cij+lij), for j odd, 3 < j < k - 1, with multiplier ^—- ; 

• the outdegree inequality associated with node ij for j even, 4 < j < k, with multiplier 

2(J-2)/2-l 

• the indegree inequality associated with node ij for j odd, 3 < j < k, with multiplier l!^-j ; 

• the outdegree inequality associated with node h, with multiplier 

It is not hard to check that the above combination of inequalities, with coefficients rounded 

down, yields ax < a0. Figure 8 is meant to illustrate the procedure for the case of k (= |C|) = 12 

(even) and 11 (odd). For the SEC associated with N(Ciaib), the corresponding multiplier appears 

on the 2-chord (w6); whereas for the SEC associated with N(C), it appears on the arc (n,i2) of 

C. For each outdegree inequality associated with a node ij (marked with +), the multiplier appears 

near the node; the same holds for each indegree inequality associated with a node ij (marked with 

-).D 

Theorem 4.4 Let w,ai,... ,aka,bi,..., hb, be distinct nodes with ka,kb > 1, kb € {ka,ka + 1}, 

and ka + kb +1 < n- 1. Let C be the directed cycle visiting, in sequence, nodes w, h, b2,..., bkb, aka, 

ak -!,••■ ,&i,w, and define 

F:= \J{(<H,bj):i<j<i + h 3<h}. 
i=l 

Then the fork inequality 

ax := x{C) + x(F) + E?=i EJLI ^aibj + 

Etil<*i>{«*+!.• • •'G^>) + ^fc1 x^b^■ ■ ■'bk»}>bj) ^ka + kb =: ao 

is a rank 1 maximally 2-lifted cycle inequality, hence facet defining for P (see Figure 9). 
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k even (£ = 12, // = 63) ifc odd (it=l 1, //=32) 

Figure 8: Illustration of the Chvatal derivation of a shell inequality. 

Proof. We use the same reasoning as for Theorem 4.3, i.e. we show that the fork inequality satisfies 

conditions (a), (b), (c) of Theorem 3.2. Notice that F is the set Q2 of chords with coefficient 2. 

(a) Same as in Theorem 4.3. 

(b) Let (u,v) be such that auv = 0. We claim that auv is maximal. If w € {u,v}, this follows 

from Corollary 2.3. Otherwise there are two cases to be considered. 

Case l.u = Oi for some i € {1,..., *«}• Then v = aJ for some 3< i ~ 2- and the claim follows 

from Theorem 2.1, case (i), as it applies to the 2-chord (aj+i,bj+i). 

Case 2. u = b, for some j 6 {1,..., h}. If v = h for some i > j + 2, the claim follows 

from Theorem 2.1, case (ii), as it applies to the 2-chord (aj+1,bj+1). Otherwise v = o, for some 

i E {l,...,fc«}, and the claim is proved by exhibiting x* € P with support A* := {(0,-1,^-2), 

(oi_2,ai_3), .... (a2,ai), (a^), (w,6i), (61,62), • • •, (6j-l,6j), (6j,Ot), (oi.Oi+i), ..., (ofca_i,ofco), 

(afca,6fcj*, (6fc6,6fc6-i), .-., (6J+2,6J+I)- 
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K = h = i 

Figure 9: Support graphs of two fork inequalities. 

(c) We give the following Chvätal derivation of the fork inequality. For h = 1, 2,..., we define 

( 1 if he {1,2,3} 
Gh '■= { 

{ ah-\ + °h-2   if h > 4. 

It is easy to see that ah+2 = ££=i <n f°r a11 h- Now let M := CT|F|+3» where F is as in the theorem. 

Here is the list of inequalities to be combined, along with their multipliers (see Figure 10 for an 

illustration). 

• The SEC associated with N(C), with multiplier ^-; 

• For each chord {aubj) € F, the SEC associated with NiCa^), with multiplier £*±i; 

• For each node ait i = 1,..., ka, the associated outdegree inequality, with multiplier ^~^2i+1; 
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k =3,*, =4 (/i = 21) 

/i-21 

*.=*,=4(A/ = 34) 

Figure 10: Illustration of the Chvätal derivation of a fork inequality. 

• For each node bj, j = 1,..., kb, the associated indegree inequality, with multiplier ß~°21. 

5    Maximally 2-Lifted Cycle Inequalities of Unbounded Rank 

We next establish an important property of the family of lifted cycle inequalities. 

Theorem 5.1   The family of lifted cycle inequalities contains members of unbounded Chvätal rank. 

Proof. Let C be a cycle with node set ii,...,ik, k > 8 even, and consider the nonmaximal 2- 

liftable chord set Q := {(ti,is), (*3,*5), • • •. («fc-i,*i)}- Let ax < Qo be any lifted cycle inequality 

associated with C and such that a^ = 2 for all (i,j) e Q. We claim that for any subset 5 of the set 
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iVeven := {k, «4, • • • i *Jfc} of even nodes, the subtour elimination inequality associated with N(C) \ S 

must have a positive multiplier in any Chvätal derivation of ax <a0. Since the number of subsets 

S is exponential in k (which in turn is bounded only by n), it then follows from Chvätal, Cook 

and Hartmann [7] that for any M > 0 there exists a lifted cycle inequality in a sufficiently large 

digraph, whose Chvätal rank is at least M. 

To prove the claim, we use the same argument as in the proof of Lemma 4.2. Namely, suppose 

there exists a Chvätal derivation of ax < a0 in which the SEC associated with some 5* := N(C)\S 

with 5 C TVeven has 0 multiplier. Then ax < a0 must be valid for the polytope P* defined as the 

convex hull of points x E {0,1}A satisfying the degree inequalities and all the SEC's except for 

the one associated with S*. But here is a point x* € P* that violates ax < a0. To construct the 

support A* of x*, start with A* := C and then, for each ij € 5, remove from A* the two arcs 

incident with ij (having coefficient 1), and add the arc (zj_i,i,+i) € Q (which has coefficient 2). 

Then ax* = \C\ > a0.D 

Next we introduce a large family of maximally 2-lifted cycle inequalities whose set Q2 of 2-lifted 

chords is of the type used for the proof of Theorem 5.1, and which therefore contains members 

with unbounded Chvätal rank. Notice that in addition, these inequalities satisfy the condition of 

Corollary 3.3. 

Theorem 5.2 Let C be the cycle visiting in sequence the nodes ii, i2, ■■■, Uk for some integer 

k>2 satisfying 4ife < n - 1. Further, let Sx := {ij € N(C) : j is odd}, and d := {(n, t3), (»3, k), 

■ ■■, (üfc-i, *i)}-  Then the curtain inequality 

2fc-l 

ax := x(C) + xfr(Si)) + x(d) + £ {xijhk_j+2 + xiik_j+2ij) < 4A: - 1 =: a0 
j=3 

j  odd 

IS a maximally 2-lifted, hence facet defining, cycle inequality for P. 

Proof.  Let Qt := {(i,j) : en, = t} for t G {0,1,2}.   Clearly, Q2 has no crossing chords and no 

nooses, so it is 2-liftable. Also, \Q2\ = |C|/2 + (\C\ - 4)/2 = \C\ - 2, hence Q2 is maximal. Further, 
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Qo is easily seen to consist precisely of those chords whose coefficient is forced to 0 by the conditions 

of Corollary 2.3. Hence we only have to show that the curtain inequality is valid for P. 

From the properties of the 2-liftable chord set Q2, the inequality 

x(C) + 2x{Q2) < 4fc - 1 

is valid for P(R \ Q2). Thus the curtain inequality is satisfied by all x E P such that x(Qi) = 0. 

Now let x e P be such that x(Q\) > 1. Then subtracting this inequality from the sum of the 2k 

indegree inequalities and the 2k outdegree inequalities for the odd nodes 11,13,... ,Hk-\, produces 

an inequality ßx < Ak - 1, with ß > a. This proves the validity of the curtain inequality for P.D 

The pattern of chords with coefficient 2 in a curtain inequality is illustrated in Figure 11, where 

odd and even nodes are marked by + and -, respectively. The chords with coefficient 1 are all 

those (not shown in the figure) joining pairs of odd nodes. 

+ + 
i,      ^ 

+      k = 2 + + k = 3 

Figure 11: 2-liftable chord sets of curtain inequalities. 

The class of curtain inequalities can be extended to cycles of length \C\ ^ 0 (mod 4).   The 

corresponding graphs for \C\ = 5,6,7 are shown in Figure 12. 

For the cases \C\ = 1 (mod 4) and \C\ = 3 (mod 4) we have the following. 
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Figure 12: Support graphs of curtain inequalities for \C\ = 5,6,7. 

Theorem 5.3 Let C be the cycle visiting in sequence the nodes i\,..., Uk+i for some integer k,2< 

k < n/4. Further, let S1 := {ij € N(C) : j is odd }, and Pi := {(ti,ts), (*3,»5). • • •, (t4fc-i.»4fc+l)}- 

Then the curtain inequality 

2fc-l 

ax := x(C) + x(7(5i)) + x(Pi) + Yl (xi^k-j+2 + xHk-j+2ij) + xhUk+i ^ 4fc =: Q0 
3=3 

j  odd 

is a maximally 2-lifted, hence facet defining, inequality for P. 

Proof. Parallels the proof of Theorem 5.2. As in that case, we only have to show that the inequality 

is satisfied by all x € P such that x(Qi) > 1. Let x have this property. Then adding 

• the outdegree inequalities for nodes i\, 23,..., Hfe-l 

• the indegree inequalities for node 13, J5,..., Uk+l 

• 1/2 times the outdegree inequality for node z4fc+i 

• 1/2 times the indegree inequality for node i\ 

• 1/2 times the inequality -x(Qi) < -1 
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we obtain an inequality ßx < 4k + 0.5, with ß > a. Rounding down the coefficients on both sides 

then yields an inequality that implies ax < 4k.O 

Theorem 5.4 Let C be the cycle visiting in sequence the nodes i\,..., i^k+3 for some integer k, 2 < 

k<n/4. Further, let S2 := {ij e N(C) : j is odd}, and P1 := {(11,13), (13, «5),- • •, (*4fc+i,*4fc+3)}- 

Then the curtain inequality 

2k-l 4fc+l 

ax := x(C) + x(7(5i)) + x(Px) + ^ (xiji4k_j+2 + xiik_j+2ij) - J^ xi4k+3ij <4k + 2:=a0 

j  odd j  odd 

is a maximally 2-lifted, hence facet defining, inequality for P. 

Proof. As in the case of Theorem 5.2, Q2 can easily be seen to be a maximal 2-liftable chord set. 

Also, from Theorem 2.2, all chords incident from or to even nodes have 0 coefficients. Further, 

from the same theorem as it applies to the 2-chord (i4fc+i, ^1), all chords incident from ^+3 have 

0 coefficients. Finally, to prove validity, the inequality can be shown to be satisfied by all x € P 

such that x(Qi) > 1 by adding 

• the outdegree inequalities for nodes i\, 23,..., i^k+i 

• the indegree inequalities for nodes ii, 13,... ,i^k+3 

• the inequality — x(Qi) < — l.D 

Finally, for the case \C\ = 2 (mod 4) we have a stronger result, i.e. we can identify a larger 

class of facet defining inequalities that contains as a special case the curtain inequality with \C\ = 

2 (mod 4). 

Theorem 5.5 Let C be an even length cycle visiting nodes i\,... ,i\c\- Define the cycle 

Ci := {(ii, z3), («3» *5), • • •. (*|C|-i> *i)} 

and let S\ be the node set of C\. Then for any maximally 2-liftable chord set Q% containing C\, 

the inequality 

ax := x(C) + x(7(Sl)) + x(Q2) < \C\ - 1 
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is a maximally 2-lifted, hence facet defining, inequality for P. 

Proof. Since Q2 is maximally 2-liftable, every x € P satisfies x(C) + x(Q2) < \C\ - 1. Thus we 

only need to prove that the inequality of the Theorem is valid for P. Clearly, all x € P such that 

x{Q\) = 0, where Qi is the set of chords with coefficient 1, satisfies the inequality. Now let x e P 

be such that x{Qi) > 1, and note that |5i| = \C\/2. Then adding up 

• the outdegree inequalities for nodes i e Si 

• the indegree inequalities for nodes i € Si 

• the inequality —x(Qi) < —1, 

we obtain an inequality ßx < \C\ - 1, where ß > a.ü 

The curtain inequality for \C\ = 2 (mod 4) is then a special case of the inequality of Theorem 5.5. 

Corollary 5.6 Let C be the cycle visiting in sequence the nodes ii,i2, ■ • • ,Uk+2 for some inte- 

ger k > 2 satisfying 4Jfc + 2 < n - 1.   Further, let Si := {ij € N{C) : j is odd}, and C\ := 

{(*l,*3), (*3,»5), ■ • ■, (*4fc+l,»l)}-  Then the curtain inequality 

2fc-l 

ax := x(C) + x(j{Si)) + x(d) + Y, (xiM-i+2 + xUk-j+»i) + ^i^+i < 4fc + 1 =: a0 
3=3 

j  odd 

is a maximally 2-lifted, hence facet defining, cycle inequality for P. 

6    Separation 

The structure of the lifted cycle inequalities lends itself to relatively easy (heuristic) separation 

procedures. Here is an example of a polynomial time separation procedure that works in many, 

though not all cases. Whenever the condition of the following Theorem is satisfied, which can be 

checked in 0(n3) time, one can derive at least one, and sometimes several, violated valid inequalities. 
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Theorem 6.1 Let x be a fractional point of the subtour elimination polytope, such that 

x(7(5)) = |5| - 1 (1) 

for some S C N, 2 < \S\ < n — 2.  If there exists a collection of distinct arcs (ir,jr) £ j(S) and 

associated distinct nodes kr € N\S, r = 1,..., q, where 1 < q < n — \S\ — 1, such that 

xirjr + xirkr + xkrjr > 1,     r = 1,..., q, (2) 

then the inequality 
9 

x(7(S)) + £>v> + xirkr + xkrjr) <\S\ + q-l (3) 
r=l 

is valid for the ATS polytope and violated by x. 

Proof. We show that (3) is valid by induction on q, where at each step of the induction we use a 

Chvatal derivation. For q = 1, we add 

5 times the inequality x("f(S)) < \S\ — 1, 

\ times the inequality x(7(5U{fci}) < \S\, and 

5 times the inequality 2x,Ul + xilkl + x^^ < 2 

to obtain, after rounding down the resulting inequality, 

z(7(S)) + xiljx + xilkl + xkljl < \S\, 

which is the special case of (3) for q = 1. Suppose (3) is valid for q = 1,..., t - 1, and let q = t. 

Now add 

i times the inequality ^(S)) + E'=ifer + xirkr + xjrkr) < |5| +1 - 2 

\ times the inequality x(~f{S U {kt}) + £*=i(z^ + xirkr + xkrjr < \S\ +1 - 1, 

(both inequalities being valid by the induction hypothesis), and 

^ times the inequality 2xj0t + xitkt + xktjt < 2, 
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to obtain, after rounding down the resulting inequality, 

x(-r(S)) + £r=l(Zir>  + Xirkr + Xkrjr)   <   \S\ + t - 1, 

thus proving that (3) is valid. 

To show that (3) is violated by x, notice that from (1) and (2) we have 

i 
5(7(5)) + £fer + xirkr + xkrjr) > \S\ - 1| + q.D 

The inequality (3) can also be obtained through F-lifting, an operation introduced by Ascheuer, 

Fischetti and Grötschel [1], in the context of the TSP with time windows. 

A few comments are in order on the nature of the inequality (3). If the arcs (ir,jr), r = l,...,q 

are pairwise compatible and do not form a cycle shorter than |5|, then inequality (3) is obtainable 

from a cycle inequality x{C) < \C\ - 1 through sequential but not necessarily maximal lifting. 

Here C is obtained from any directed cycle C with node set S and containing the arcs (ir,jr), 

i = 1,... ,q, by replacing every arc {ir,jr) with the pair of arcs (ir,kr), (kr,jr). The arcs (ir,jr), 

r = l,...,q, then form a (not necessarily maximal) 2-liftable chord set with respect to the cycle C. 

As to the complexity of the separation procedure for identifying inequalities of class (3), if the 

set S for which condition (1) holds is given (which is the case whenever the separation procedure is 

applied after the separation of subtour elimination inequalities), then examining every arc (ir, jr) e 

7(5) and trying to identify a node kreN\S such that {ir,jr) and kr satisfy condition (2), takes 

at most |5|2(n - \S\) steps, i.e. the procedure is 0(n3). In case the set S is not given, the above 

separation procedure is still polynomial in n, as the number of subtour elimination constraints 

satisfied at equality by any point x of the subtour elimination polytope is known to be 0{n2), and 

their identification requires 0{n3 log n) steps [12]. 

Example. Consider the graph on 8 nodes with the feasible point x shown in Figure 13 (x satisfies 

all the subtour elimination inequalities on 2 to 7 nodes). The subtour elimination inequality on 

S := {5,6,7,8} is satisfied by x at equality: X5G+X67+X78+X&5 = 3. The arc set {(5,6), (6,7), (7,8)} 
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Figure 13: Feasible point x of the subtour elimination polytope. 

© 

Figure 14: Support of 2-lifted cycle inequality violated by x. 
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and associated node set {2,3,4} satisfy the requirement of the theorem: £56 + 252 + #26) = ^67 + 

^63 + 237 = ^78 + S74 + X48 = I > 1. Thus the inequality 

x(7({5,6,7,8})) + (x56 + x52 + x2e) + (x67 + x63 + xZ7) + (x78 + ^74 + ^4s) <4 + 3-l = 6, 

whose support is shown in Figure 14, is valid but violated by x, for which the lefthand side takes 

on the value ^ > 6. 

Starting with the same set S, but using any nonempty subset of size < 3 of the arc set 

{(5,6), (6,7), (7,8), (8,5)}, we obtain a different lifted cycle inequality violated by x. Further- 

more, using as a starting set 5" := {1,2,3,4}, we obtain another set of inequalities violated by 

x. 

7    New Inequalities for the Symmetric TS Polytope 

It is well known that every ATS problem defined on the complete digraph G = (N,A) can be 

restated as a STS problem defined on a special undirected graph G* := (V*,E*), where V* has a 

pair of vertices i+,i~ for every node i E N, and E* has an edge (i+,j~) for every arc (i,j) E A 

and an edge {i+,i~) for every node i E N, with the condition that the only feasible tours in G* 

are those that contain every edge (i+,i~), i = 1,... ,n. This equivalence can be used to find new 

facets of the (general) STS problem as follows. 

Let ax < Q0 be any asymmetric facet defining inequality for the ATS polytope. To every 

incidence vector x E {0,1}A of an arc set in G associate the incidence vector y E {0,1}E* of an 

edge set in G*, as follows: yi+j- = xtj for all (i,j) G A, and yi+i- = 1 for all i E N. Also, associate 

to the vector a E JRA a vector ß E ME' by the rule that ßi+j- = a^ for all (i,j) E A, and 

ßi+i- = 0 for all i E N. Then the inequality ßy < a0 defines a facet of the face of the STS polytope 

defined on the complete graph G* with vertex set V* by the equations yi+i- = 1, i = 1,... ,n, and 

yi+ ■+ — yt- - = 0 for all i, j = 1,... ,n, i ^ j. One can then free the variables fixed at 1 or 0 

and calculate lifting coefficients for them. The outcome is a facet defining inequality ßy < ßo for 

the STS polytope on the complete graph G*. Sometimes the resulting inequalities are of a known 
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<13 

Figure 15: Curtain inequality for the ATSP and corresponding inequality for the STSP. 

<13 

Figure 16: Fork inequality for the ATSP and corresponding inequality for the STSP. 
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type; but when ax < a0 is a lifted cycle inequality then the corresponding inequality ßx < ß0 

for the STS polytope on the complete graph often seems to be new. Figures 15 and 16 show two 

lifted cycle inequalities for the ATS polytope and their counterparts for the STS polytope. We are 

currently investigating more closely the polyhedral implications of the transformation of an ATSP 

instance to a STSP instance. Apparently, this issue has not been considered before. 
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